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Polarity reversal and symmetry in 
semiconducting compounds with the 
sphalerite and wurtzite structures 

D. B. HOLT 
Department of Metallurgy and Materials Science, Imperial College, London, SW7 2BP, UK 

The evidence for the occurrence of polarity reversal domains and inversion twins in com- 
pounds with the wurtzite and sphalerite structures is reviewed. Anti-coincidence lattices 
are defined for orientation relationships such that a fraction of sites of the two lattices 
coincide, but wrongly, to produce anti-coincidence sites. Proceeding from Friedel's 
theorem, the range of Friedel indices, 1, can be extended to unity and negative odd 
integers. Polarity reversal domains are characterised by / = --1 and n th order inversion 
twins by / = -- (3) n. The partial symmetry operations producing coincidence and anti- 
coincidence lattices are discussed. 

1. Introduction -- polarity in the wurtzite 
and sphalerite structures 

Neither the wurtzite nor the sphalerite structures, 
which are of common occurrence among semicon- 
ducting compounds, are centrosymmetric. Hence, 
as is weU-known, these structures exhibit both 
surface and bulk polarity. For example in the 
sphalerite structure, in the [111 ] a direction, the 
covalent bonds run from an A atom (i.e. one of 
the lower valence element such as the III atom in 
a I I I -V compound) to the B atom. In the [Ti-i-] b 
direction the bonds run from B to A atoms and 
the two directions are not equivalent as they are in 
the simpler diamond cubic structure. This sign 
convention corresponds to placing the A atoms at 
the points, at e.g. 000 of the space lattice and the 
B atoms at the sites displaced from them to e.g. 
�88 �88 �88 When slices of sphalerite-structure com- 
pounds are cut in {i 11} orientation, one side ter- 
minates i n  A atoms triply-bonded to the crystal. 
Such faces are termed (111) A surfaces and with 
the present sign convention [1], the (111)a  direc- 
tions are the outward normals to such faces. The 
other side of  the slice terminates in B atoms triply- 
bonded to the crystal. The (111) b directions are 
outward-drawn normals to such {T]" 1--} B faces. 

Similarly the wurtzite structure, which has an 
hexagonal space lattice, is polar in the c-axis direc- 

tion (0001)  and on the basal planes {0001}. The 
[0001]a direction is the outward normal to the 
(0001)A face and the [000 ] ]b  direction is the 
outward normal to the (000"f)B face. 

The surface polar differences are the best 
known and show up in chemical etching, mechani- 
cal damage sensitivity and crystal growth behaviour. 
A review of the early literature was given by 
Barber and Heasell [2]. 

1.1. Polar i ty  reversal 
The clearest evidence for polarity reversal is the 
observation of areas of reversed etching polarity 
on {0001} surfaces of CdS [3], ZnO [4] and on 
{100} surfaces of epitaxial GaAs grown on ger- 
manium [5, 6]. This is not solely a surface phenom- 
enon. Piezoelectric polarity reversal was found 
throughout the domains under the areas of  reversed 
etching behaviour in CdS and ZnO. 

The first polarity reversal interpretation of this 
evidence was in an analysis of the geometry of the 
interfaces between the domains, which were des- 
cribed as antiphase boundaries (APB) [7], using 
the ball-and-wire model approach originated by 
Homstra [8]. If the occupation of the two sites of  
the basis unit, at 000 and at �88 �88 �88 in the sphalerite 
structure, by A and B atoms is interchanged 
between two volumes, they have reverse polarity. 
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These volumes are in "antiphase" as the term is 
used in the field of  ordering in metallic alloys. The 
term can be thought to refer to a periodic occupa- 
tion function which is positive for A-atom occupied 
sites and negative for B-occupied sites. These signs 
are those of  the ions, i.e. of  the net charges in the 
Wigner-Seitz cells surrounding the sites, assuming 
that the bonding is on the ionic side of  neutral 
bonding, as is generally the case. Polarity reversal 
domains are then separated by APB's across which 
the occupation function undergoes "phase" (sign) 
reversal. It necessarily follows that all bonds cross- 
ing APB's are wrong A - A  or B-B bonds, not A-B 
bonds. The diffraction contrast of APB's in the 
sphalerite structure was also treated [7]. The dif- 
fraction contrast of  APB's in wurtzite-structure 
compounds, which were referred to as antistruc- 
ture boundaries, was analysed by Blank et al. [9]. 

It had earlier been pointed out that to each 
geometrical type of grain boundary analysed in the 
diamond structure [10, 11 ] there corresponded 
two distinguishable cases in the sphalerite struc- 
ture [12]. It was recognized that the one could be 
changed to the other at the join of an APB with 
the grain boundary as illustrated for the case of 
the first order twins in sphaterite in Fig. 1. The dis- 
tinction between an APB across which there is a 
"phase" reversal of the occupation function only, 
and inversion twins which 'involve this and a 
"twinning" orientation change as vcell is brought 
out here. The first order twin can be regarded as 
produced in various ways. Here it is treated as 
produced by a tilt about the (1 10) axis normal to 
the plane of the figure and lying in the [1 11] 
interface plane. The two twins in the sphalerite 
structure corresponding to the single first order 
twin in the diamond structure are the mver~ion 
twin (0 = 70o32 ') and the upright twin (O = 
180 ~ + 0  =250o32 ') as shown. For mnemonic 
convenience A atoms will be represented by 
alabaster (white) circles or faces and B atoms by 
black circles or faces in this paper. 

1.2. Diffraction contrast studies of APB's 
and inversion twins 

Inverted twins are those in which the structure is 
twinned and polarity-reversed relative to the 
matrix. The twin-matrix interface then has an 
APB character. As can be seen in Fig. 1, all the 
cross-interface bonds are wrong (represented by 
zig-zag lines here). Although inversion twins are 
to be expected to be o f  higher energy than upright 

6~= 70o32 ' 

t 
I 

@ = 250~ 

Figure 1 First order {111} twin boundaries in the sphater- 
ite structure. Open circles (white sites) represent A atom 
positions and full circles (black sites) represent B atom 
positions. Short lines represent bonds and zig-zag lines 
represent wrong (like atom) bonds. The paratwin or 
inverted twin (I = --3) and the orthotwin or upright twin 
(1 = 3) boundary meet at a {111} B antiphase boundary 
(I=--1).  (After [7]). The Friedel indices, I, are defined 
later in this paper. 

ones, they were found to occur commonly in BeO 
[13]. Detailed diffraction contrast studies of inver- 
sion twin interfaces were carried out in this material 
using X-ray topography [14]. 

A prominent "domain-form" structure, found 
in epitaxial films of sphalerite structure CdS, CdSe 
and CdTe grown on (1 10) oriented surfaces of  
several cubic system substrates was shown, in the 
case of CdSe, to be due to the growth of polarity 
reversal domains, apparently arising by the well- 
known epitaxial growth phenomenon of double 
position twinning [1]. Beautiful observations of  
polarity reversal domains in epitaxial GaAs and 
GaP grown on hemispherical germanium substrates 
and on silicon in several orientations were made by 
Morizane [15]. He also carried out transmission 
electron microscope diffraction contrast analyses 
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[110] Figure 2 Double positioned 
"twin" nuclei on a (110) 
oriented epitaxlal growth sub- 
strate. Twofold (21r/2) rotation 
about the substrate normal puts 
the nuclei in polarity reversal 
relation to each other. Each 
nucleus is equivalently oriented 
to the substrate. (After [1 ]). 

of  the antiphase boundaries in these sphalerite 
structure materials. 

The upright and inverted twins of Fig. 1 differ 
by a rotation of 180 ~ about a <110> axis. The 
double position twins of the domain form struc- 
ture in epitaxial films of CdSe which turned out to 
be in antiphase relation also differ by a 180 ~ 
rotation of the initial nuclei about the [110] sub- 
strate surface normal as shown in Fig. 2. Morizane 
found polarity reversal domains in films grown on 
(100) and (110) substrates but never in those 
grown on substrates in (111) orientation. 

Neave et al. [6] recently observed antiphase 
domains in epitaxial GaAs films grown on ger- 
manium {001} substrates, confirming an earlier 
report [5]. They suggested a nucleation mech- 
anism based on the fact that the first monolayer 
deposited on germanium during growth is always 
arsenic. If there occur steps of heights that are half 
integral multiples of the basis unit height, then on 
one side the surface germanium atoms occupy fcc 
lattice (000 type) sites. On the other side of such 
steps the surface germanium atoms occupy the 
other sites of the basis unit, i.e. �88 ~ �88 types sites. 
Arsenic atoms bonding on the first side of the step 
will occupy �88 �88 �88 sites. On the second side they 
must, however, occupy 000 sites. The second 
monolayer of gallium atoms will necessarily occupy 
000 sites on the first side of the step, but �88 �88 �88 
sites on the other side of the step. That is, nuclea- 
tion on sites separated by such steps will be in 
antiphase, with occupation of the basis unit sites 
interchanged. Neave et aI. [6] observed the resul- 
tant antiphase domains in reversible black-white 
contrast in TEM micrographs using a new con- 
vergent beam diffraction contrast method. 

An analysis of polarity-reversal, coloured anti- 
symmetry operations [16] was suggested by these 

observations and serves to account for them. A 
preliminary account was published previously 
[17]. A more complete account of the coloured 
symmetry treatment of these phenomena will be 
presented later. 

2. The polar symmetry of the sphalerite 
structure 

Fig. 3 shows the orientation of the {111}A and 
{]-]'I-}B faces in a single crystal of a material with 
the sphalerite structure. They form a polar octa- 
hedron, drawn with its apices at the face centre 
sites of an fcc unit cell of the structure in Fig. 3a. 
This illustrates its crystallographic orientation and 
makes it possible to index the faces and directions 
involved. The polar octahedron is shown again in 
Fig. 3b with the three visible {fTT}B faces shaded 
and certain axes and edges indexed. The polar 
octahedron is drawn in planar form in Fig. 4. The 
polar octahedron is simpler than two polar tetra- 
hedra [1] and can readily be constructed. 

The use of the term double position "twinning" 
for polarity reversal nucleation is unavoidable in 
relation to the terminology of epitaxial growth but 
is open to misinterpretation. It is therefore necess- 
ary next to discuss twinning and the Friedel index. 

3. Coincidence lattices and the Friedel 
index 

In 1926 Friedel [18] introduced the concept of 
the twin index and proved a remarkable theorem 
about coincidence lattices. This work is important 
for our purposes and is not as well known as it 
should be. The only account in English is in a 
simplified form apparently relating to cubic 
system structures only [19]. Therefore Friedel's 
argument will be briefly outlined here. 

Suppose that two regions of a crystal are 
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Figure 3 The polar octahedron of { 1 11} A and { i 11-} B faces in the sphalerite structure (a) inscribed in an f c c unit cell 
for purposes of orientation and indexing and (b) with the three visible { T 11-} B faces cross hatched and certain direc- 
tions indexed. 

twinned with respect to a mirror plane (pqr)or 
a twin axis [gh k]. Imagine the space lattices of the 
twin and matrix to be continued through the inter- 
face (composition plane). A certain fraction, f, of  
the lattice sites of the twin and matrix orientations 
will be found to coincide to constitute a "coinci- 
dence lattice" [18, 20]. The super-lattice of coinci- 
dence sites has a unit cell of volume V. This is 

defined to have as its base the smallest two- 
dimensional mesh in the mirror plane (pqr) and 
its height is the coincidence site spacing in the 
direction [hkl] normal to this plane. Alternatively 
[ghk] may be the twinning axis and (pqr) the 
plane normal to it. The volume of the coincidence 
lattice cell V is an integral multiple of the volume 
of the unit cell of the original structure, v. Two 

E 
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Figure 4 The polar octahedron drawn 
out flat. The four {111} A faces are 
parallel to the faces of the Thomp- 
son's tetrahedron. Accordingly the 
four {111} A faces are indexed as in 
Hirth and Lothe [36]. However, as 
the polar octahedron is used to repre- 
sent macroscopic polar symmetry, 
the octahedron, unlike Thompson's 
tetrahedron is not of atomic dimen- 
sions, i.e. the edges are not of length 
a/2 (110). The symbol [) is used, 
following Hirth and Lothe, to indi- 
cate the sense of the direction 
indexed. The (1 1 1 ) a  directions are 
the outward drawn normals to the 
corresponding {111} A faces and the 
(1 1 1) b directions are the outward 
drawn normals to the {111} B faces 
of the same indices. 



cases must be distinguished. If V has no site at its 
centre nor at the centres of its faces other than 
(pqr), the twin index is 

I = V/v. (1) 

In those cases in which one of  the aforementioned 
conditions do not hold, the twin index is 

I = V/ev. (2) 

The twin index is the ratio of the volume per 
coincidence site to the volume per lattice site. 
The fraction of coindicence sites is the reciprocal 
of this, i.e. 

f = 1/I. (3) 

Following Friedel, we consider first the case of  
lattices having primitive cells. Let the origin be at a 
point 0, and g, h, k cleared of common factors. 
Then, g, h, k are the coordinates of the first 
coincidence site N on the line [ghk] proceeding 
from the origin. The plane parallel to (pqr) pass- 
ing through Nhas  the equation 

px + qy rz 
- -  + - -  = p g + q h + r k  = +E. (4) 
a b c 

The integer E is the number of  lattice planes 
included between the plane passing through N and 
the origin. The volume V of the coincidence lattice 
cell erected on (pqr) and [ghk] is therefore equal 
to Ev. 

If E is odd, the index of the twin having twin 
plane (pqr) or twin axis [ghk] is therefore 

I = X = p g + q h + r k .  (5) 

If E is even, there is a plane of the series (pqr) 
which cuts the line ON at its mid-point. The 
coincidence lattice cell can still be chosen of such 
a form that it might have a point at its centre or 
at the centre of  one of its lateral faces. Therefore 
the conditions require the use of Equation 2 rather 
than Equation 1 so 

S = E/2. (6) 

Friedel worked through the cases of the coinci- 
dence lattice cell being primitive P, (above), or 
centred on face ab (in the (pqr) plane), C, or body 
centred, /, or finally face centred, F. The results 
(recapitulating results 5 and 6 for completeness) 
were as given in Appendix I. 

Thus Friedel proved the powerful theorem that 
for all Bravais lattices and all orientation relation- 
ships between two grains the Friedel index must 

always be an odd integer. In other words, for all 
lattices, the only possible fractions of  coincidence 
lattice sites are 1/3, 1/5, 1/7 . . .  

In the particular case of crystal structures of 
the cubic system the perpendicular plane and 
direction have the same Miller indices. Let these be 
(hkl) and [hkl]. Then [20] (substituting into 
Equation 4) 

2; = h 2 + k  2 + l  2. (7) 

In addition, for crystal structures based on the fcc 
lattice such as the diamond and sphalerite struc- 
tures the rules of Case D in Appendix I apply. 

For the diamond and sphalerite structures the 
first order twin has, e.g. (pqr) = (1 11) so that I = 
E = 3. The second order twin has (pqr) given, for 
example, by (221) so that I =  G = 9. In general 
the n th order twin has 1 = (3) n. Twinning in struc- 
tures based on the fcc lattice can be regarded as 
produced by twofold (180 ~ ) rotations about 
(1 1 1) axes. One such rotation produces a first 
order twin orientation. Two successive such 
rotations about two different (1 11) axes produce 
a second order twin and so on. 

Values of the Friedel index 1 other than (3) n 
such as 5 and 7 correspond to highly symmetrical 
(high coincidence-site density) orientation relations 
which are not twinning relations. They are to be 
expected to have low energy, high coincidence-site 
area-density, grain boundary interfaces associated 
with them. 

A critical discussion of the coincidence lattice 
was given by Fletcher [21]. The first systematic 
treatment of the sub-symmetry operations giving 
rise to these (partial) coincidence lattices was 
unpublished work of F. C. Frank in 1958 quoted 
in [22] and [23]. In this he developed procedures 
for obtaining coincidence lattices for rotations 
about [100] and [1 1 1] axes in the cubic system. 
C. G. Dunn and H. Brandhorst in 1959 in further 
unpublished work [22, 23] developed a procedure 
for rotations about [1 10]. Raganathan published 
a generalized treatment for the cubic System and 
a number of  solutions listing the axis and angle of  
rotation and the relative density of coincidence 
lattice sites, E, have appeared [22, 23]. Later 
Bollmann and co-workers [24, 25] extended the 
idea to define other types of derived lattices useful 
in treating interfaces and orientation relationships. 
Recent work on the structure of  grain boundaries 
in diamond structure materials employs the 
coincidence site lattice [26, 27]. In this paper the 
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idea of the (partial) coincidence lattice and the 
(partial) symmetry operations corresponding to 
them wilt be extended to polarity and its reversal 
in the cubic sphalerite structure. 

4. Anti-coincidence lattices, coioured 
antisymmetry operations and unity 
and negative Friedel indices 

Coincidence lattices are lattices in which a fraction 
of the sites of Lattices 1 and 2 coincide and 
Friedel's index is the reciprocal of this fraction f. 
The symmetry operations of a crystal structure 
bring about complete self-coincidence, that is they 
carry every lattice point to another, and every 
atom to an equivalent atomic site. The Friedel 
index can clearly be extended to this case and is 
then I = 1 corresponding to f = 1. 

An anti-coincidence array or "complex" [28, 
29] is one in which a fraction of the atomic sites 
of the two crystal structures coincide, but in all 
cases wrongly. In traditional crystal symmetry all 
lattice sites are equivalent. Cotoured symmetry 
deals with the symmetry of lattices in which points 
were made distinguishable by colouring say half 
white and half black. A new class of "antisym- 
metry" operations are then possible. These carry 
each lattice site to one of opposite sign or colour 
[16]. Binary semiconducting compounds have 
dichromatic (two colour: black and white) sym- 
metry. Antisymmetry operations produce full 
anti-coincidence, i.e. pure polarity reversal in 
lattices. Partial antisymmetry operations w~l 
produce anti-coincidence of a fraction of sites. 
Exchange operations produce the corresponding 
anti-coincidences in crystal structure complexes 
[17]. A systematic discussion of the dichromatic 
point group symmetry of the sphalerite and 
wurtzite structures will be given in relation to the 
polarity of their physical and chemical properties 
in a later paper. 

Complete polarity-reversal, i.e. antisymmetry 
exchange operations in crystal structures produce 
complete anti-coincidences with Friedel index I = 
--1 and represent the "orientation relation" of 
"antiphase", polarity reversal domains. The c01ours 
of all the faces of the polar octahedra of Figs. 3 
and 4 are exchanged for I = -- 1. 

Polarity reversal twins have Friedet indices 
I =-- (3)  n. These orientations are produced from 
the original, matrix orientation by repeating n 
times the twinning operation of 2-fold rotation 
about (1 1 1 > axes, no two successive axes being the 
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same, and an antisymmetry exchange operation. 
Similarly, high anti-coincidence site density grain 
orientations have Friedel indices 1 = - 5, - 7 . . .  
They are produced by sub-symmetry operations 
[22, 23] producing the orientations I =  5, 7 . . .  
and a polarity reversal, "anti-synmaetry" exchange 
operation. 

5. Antiphase domains and polarity reversal 
twins 

The extended range of Friedel indices makes clear 
the distinction between pure polarity reversal or 
antiphase domains ( / = -  I) and polarity reversal, 
inverted or "para" twins ( /=-- (3)n) .  This dis- 
tinction underlines the ambiguity of the term 
"double position twinning" for the epitaxial 
nucleation mechanism producing pure polarity 
reversal. 

First order inversion twins in the sphalerite 
structure were considered by Aminoff and Broome 
[30] an d by Buerger [31]. The latter found that 
deformation twins were not inverted in minerals. 
Ball-and-wire model analysis of the core structures 
of dislocations in the sphalerite structure showed 
that two forms of dissociated dislocation were 
possible corresponding to each one in the diamond 
structure [32]. These differed in that one had an 
upright stacking fault whereas the other had an 
inverted stacking fault. The widening of such a 
dissociated dislocation produces a single double 
atom layer of inverted material. Passage of a similar 
partial dislocation over every successive slip plane 
Parallel to the {1 11} twin composition plane 
would produce a deformation inverted twin. That 
this was found not to happen [30, 31 ] shows that, 
at least under normal circumstances, twinning 
dislocations in the sphalerite structure are of the 
type corresponding to upright fault dissociation. 

6. Discussion 
The notation introduced above makes explicit the 
distinction between polarity reversal domains for 
which I = -  1 and (polarity) inversion twins for 
which I = --(3) n where n is the order of the twin. 
The negative sign indicates antisymmetry exchange, 
i.e. "antiphase" reversal of the sign of the site 
occupation function and in general a consequent 
reversal of the actual sign of the ions at all sites. 

Polarity reversal domains (and APB's) are high 
energy defects and are apparently produced only 
as growth defects. Growth mechanisms include 
double position twinning and nucleation on either 



side of  polarity reversal steps in the substrate in 
epitaxial deposition. Polarity reversal twin and 
polarity reversal grain boundaries are also o f  high 
energy and form only during growth. 

In the case o f  metal alloys, the antiphase 
operation can be produce.d by a shear and dis- 
location mechanisms are involved in order dis- 
order transformations which proceed by increas- 
ing or decreasing the area of  APB per unit volume. 
In the sphalerite structure no antiphase shear 
exists and although stacking faults of  inverted 
polarity in extended dislocations are geometrically 
conceivable [32] no macroscopic thermal disorder 
has ever been Observed in binary compounds with 
these structures. Sphalerite-chalcopyrite structure 
disorder-order transformations do occur in 
ternary II IV V2 and I III VI2 compounds [33, 
34] and there is now some transmission electron 
microscope evidence for the occurrence of  super 
dislocations containing APB's in ZnSiP2 [35]. A 
new "bicrystallographic" coloured symmetry 
theory [28, 29] can predict the dislocation con- 
tent o f  such interfaces. It will be applied to the 
case of  sphalerite on diamond heterojunction 
interfaces in various orientations in a future paper. 
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Appendix 1 : Values of the Friedel 
twin index I 
Case A 
If the coincidence lattice has a primitive unit cell 
and ~ is odd then I = ~ ([5] above) 
but if ~ is even t h e n / =  ~/2 ([6] above). 
Case B 
If the coincidence lattice is base (ab) centred 
and if p + q is odd and g h k  unrestricted then 

I = Z  
and if p + q is even, g +  h and k not both even 

I = ~ if ~ odd but I = ~[2 if ~ even 
and if p + q  is even, g + h  and k both even, 

1 =  ~/2  if ~/2 odd and I = ~/4  if ~ /2  even. 
Case C 
If the coincidence lattice cell is body centred 
and p + q + r is odd and g h k  unrestricted 1 =  
and if p + q + r is even and g h k  are not all odd 

I = E~ if ~ odd but I = ~/2 if 2; even. 
Case D 
If the coincidence lattice cell is face centred 

and pqr are not all odd and g + h + k is odd I = 
and if pqr are all odd and g + h + k is odd I = 

(necessarily odd) 
and if pqr are not all odd and g + h + k is even 

1 = ~ if ~ is odd 1 = E/2 if ~ is even 
and if pqr are all odd and g + h + k is even I = 

~/2 if ~/2 is odd 1 = E/4 if Z/2 is even. 
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